Intermolecular potentials and the accurate prediction of the thermodynamic properties of water.

نویسندگان

  • I Shvab
  • Richard J Sadus
چکیده

The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g∕cm(3) for a wide range of temperatures (298-650 K) and pressures (0.1-700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC∕E and TIP4P∕2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC∕E and TIP4P∕2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Prediction of Thermodynamic Properties of Alcoholes Ketones and Ethers by MCORGC Eos

This paper presents the ability of a new group contribution equation of state in the prediction of thermodynamic properties of alcohols, ketones and ethers. This equation of state, called MCORGC, is based on the Chain-Of-Rotators Group Contribution equation considering a NRTL type local composition mixing rule. The group parameters required to predict the thermodynamic properties of the oxygena...

متن کامل

Investigation of Water Cluster ((H2O)n , n = 2-6) in Aspect of Structures, Energies and Thermodynamic Properties by Ab Initio methods

The intermolecular forces between water molecules are of great importance in many areas of chemistry including solvation, solution chemistry, and biochemistry. As a result of this (H2O)n systems have received a great significant of attention, both experimental and theoretical. All calculation of this study are carried out by Gaussian 98 soft ware. Geometry optimization for each cluster were be ...

متن کامل

Semi Empirical Calculation of Intermolecular Potentials and Transport Properties of Some Binary and Ternary Industrial Refrigerant Mixtures

In this study the intermolecular potential energies of some environment-friendly industrial HFC refrigerants were obtained through the inversion method which is based on the corresponding states principle. These potentials were later employed in calculation of transport properties (viscosity, diffusion, thermal conductivity and thermal diffusion factor) of some binary and ternary refrigerant mi...

متن کامل

Representability problems for coarse-grained water potentials.

The use of an effective intermolecular potential often involves a compromise between more accurate, complex functional forms and more tractable simple representations. To study this choice in detail, we systematically derive coarse-grained isotropic pair potentials that accurately reproduce the oxygen-oxygen radial distribution function of the TIP4P-Ew water model at state points over density r...

متن کامل

Effects of pH and Temperature on Oilfield Scale Formation

Water flooding is one of the most influential methods for pressure maintenance and enhanced oil recovery. However, water flooding is likely to develop the formation of oilfield scale. Scale formation in reservoirs, due to the mixing of injection water and formation water, could cause formation damage and production limit. Therefore, it is necessary to simulate the compatibility of brine and inj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 19  شماره 

صفحات  -

تاریخ انتشار 2013